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Abstract This paper discusses various issues about the rank equivalence of Lafferty and

Zhai between the log-odds ratio and the query likelihood of probabilistic retrieval models.

It highlights that Robertson’s concerns about this equivalence may arise when multiple

probability distributions are assumed to be uniformly distributed, after assuming that the

marginal probability logically follows from Kolmogorov’s probability axioms. It also

clarifies that there are two types of rank equivalence relations between probabilistic

models, namely strict and weak rank equivalence. This paper focuses on the strict rank

equivalence which requires the event spaces of the participating probabilistic models to be

identical. It is possible that two probabilistic models are strict rank equivalent when they

use different probability estimation methods. This paper shows that the query likelihood,

p(q|d, r), is strict rank equivalent to p(q|d) of the language model of Ponte and Croft by

applying assumptions 1 and 2 of Lafferty and Zhai. In addition, some statistical component

language model may be strict rank equivalent to the log-odds ratio, and that some statistical

component model using the log-odds ratio may be strict rank equivalent to the query

likelihood. Finally, we suggest adding a random variable for the user information need to

the probabilistic retrieval models for clarification when these models deal with multiple

requests.

Keywords Probabilistic models � Event space � Information retrieval

1 Introduction

Robertson’s (2005) instructive paper cautions some of the mathematical derivations of

language models for information retrieval using marginal probabilities (in Eq. 1 of Rob-

ertson 2005) because the event space of these probabilities is different from the event space

of the conditional probability. He further questions the event spaces of the earlier language

model by Ponte and Croft (1998) and by Lafferty and Zhai (2003). To answer these
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questions, Roelleke and Wang (2006) show how event spaces of the different retrieval

models are related via parallel derivations with a novel language model that uses a query

likelihood ratio for ranking. In this paper, we believe that Robertson’s assumption about

the probability distributions being uniform is not a logical necessity. It is instructive to

develop our understanding on the basis of Kolmogorov’s probability axioms and revisit the

rank equivalence of Lafferty and Zhai (2003) in this perspective.

The rest of this paper is organized as follows. Section 2 derives the marginal probability

based on Kolmogorov’s probability axioms and highlights the necessary condition that

needs to be true for the marginal probability calculation to be correct. Section 3 clarifies

Robertson’s example of stars and planets. We provide an interpretation of how the mar-

ginal probabilities can be obtained from random sampling tuples in a cross-product event

space. In addition, this section clarifies the rank equivalence of Lafferty and Zhai (2003).

Section 4 discusses rank equivalence between two retrieval models, clarifies that there are

two types of rank equivalence relations (i.e., strict and weak types) in this paper, and

discusses the impact of using different probability estimations on rank equivalence. Section

5 shows that the language model by Ponte and Croft (1998) and the language model by

Lafferty and Zhai (2003) will be (strict) rank equivalent if assumptions 1 and 2 of Lafferty

and Zhai (2003) are true. Section 6 discusses these assumptions. It shows that some

statistical component language models are strict rank equivalent to the log-odds ratio, and

some statistical component models are strict rank equivalent to the query likelihood.

Section 7 introduces the topic random variable in the probabilistic retrieval models for

clarification and for (pseudo) relevance feedback. Finally, Sect. 8 summarizes this paper.

2 Marginal probability derivation

In this paper, probabilities are defined according to Kolmogorov’s axioms, namely:

(a) Normalization axiom: pðKÞ ¼ 1 where K is the event space and;

(b) Non-negativity axiom: pðe 2 }ðKÞÞ 2 [0,1] where e is an event and }(�) is the

powerset of its argument and;

(c) Finite additivity axiom: pða [ bÞ ¼ pðaÞ þ pðbÞ for all a, b in }ðKÞ such that

a \ b ¼ ;:
For ease of discussion, we assume that all probabilities are discrete in this paper. We use

uppercase letters to denote a set and lowercase letters to denote an element or an event. We

further place a suffix after p to indicate the event space K of the probability p as follows

pKð�Þ: If K ¼ D� Q; where 9 is the Cartesian product, then pKð�Þ will be the same as

pD�Qð�Þ: Since the Cartesian product is commutative, pD�Qð�Þ and pQ�Dð�Þ are probabilities

of the same event space. A marginal probability can be identified by observing that its

argument does not specify all the values of the event space. For example, pD�QðdÞ is a

marginal probability of d in D because this probability does not specify a particular query q
in Q. If a subset C of events in X has the probability of one (i.e., pKðCÞ ¼ 1), then it

follows that any event e in K� C has zero probability (i.e., pKðeÞ ¼ 0). Therefore, we can

write an alternative probability of events that are defined in C as pC(a) where a is an event

in C. This shows that it is possible to equate probabilities of different event spaces pro-

vided one event space is a subset of the other. The event space K and event subspace C can

be denoted by two random variables, say R1 and R2, that take values in those event

(sub)spaces, respectively. Hence, pKðaÞ and pC(a) can be interchangeably written as pR1(a)

and pR2(a), respectively. In general, one can apply Bayes’ theorem to equate two event
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spaces where one event space is a subset of the other. However, Bayes’ theorem rests on

the marginal probability calculation which is shown to be derived from the probability

axioms as follows.

By the normalization axiom, we have pX(X) = 1, and pY(t) = pX(X) 9 pY(t). Since the

occurrence of X is independent of t (because X always occurs independent of t as

pX(X) = 1), pX(X) 9 pY(t) is the joint probability pX�YðX; tÞ of t and X, i.e.,

pYðtÞ ¼ 1� pYðtÞ ¼ pXðXÞpYðtÞ ¼ pX�YðX; tÞ:

Let us assume that X is exhaustively partitioned into pair-wise disjoint events, say {s}.

Using the finite additivity axiom, the (marginal) probability pY(t) of event t can be

expressed as:

pYðtÞ ¼ pX�YðX; tÞ ¼ pX�Y

[

s2X

s; t

 !
¼
X

s2X

pX�Yðs; tÞ: ð1Þ

Based on Eq. 1, the marginal probability calculation does not depend on any uniform

probability distribution assumption. Instead, Eq. 1 depends on the following necessary

condition to be true:

Necessary condition 1 For any two different events, s1 and s2 in X (that is exhaustively

partitioned), s1 \ s2 ¼ ; where X is used as in Eq. 1.

Equation 1 always holds for any event space X that cross-products with the event space Y
provided that pX(X) = 1, which is always true by the normalization axiom. Hence, the only

condition of concern is necessary condition 1 when developing retrieval models using Eq. 1.

From the point of view of probabilistic modeling (Robertson 2003), it is possible that

some hidden variable (say R1) is unaccounted for in the current model. The event space X
of this hidden variable can combine with the event space Y of the current probabilistic

model in order to form a new probabilistic model that is defined over the event space X
9 Y. The probabilities fpX�Yð�Þg of the existing model become the marginal probabilities

of the new probabilistic model. Robertson (2005) found that if the (marginal) probabilities

of the current and the new models are uniformly distributed (subject to some structural

constraint), then inconsistencies arise when using Eq. 1 to obtain the marginal probabili-

ties, compared with assigning uniform marginal probabilities. However, as we explain

later, assigning uniform probabilities is not a logical necessity where as event spaces can

always be structured as lists of tuples or equivalently as trees. Therefore, we believe that

the problem occurs because multiple probability distributions are assumed to be uniform

and not solely because of different event spaces.

It should be noted that the concern of possible problematic ranking caused by the

uniform probability distribution assumption as discussed in (Robertson 2005) is not

unjustified because some past language models do assume that prior probabilities are

uniformly distributed. For example, Berger and Lafferty (1999) considered pD�QðdÞ as the

prior probabilities which were thought to be uniform. However, they also indicated that

this probability might vary depending on document length. Therefore, pD�QðdÞ is not

necessarily uniform for some language models. Similarly, one version of the relevance

language model by Lavrenko and Croft (2001) also assumed that a prior for the document

models is uniform (i.e., Method 2: conditional sampling). However, the other version of the

relevance language model does not make such a uniform prior assumption (i.e., Method 1:

independent and identically distributed sampling). Therefore, there is a need to investigate

this issue in a more thorough manner.
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3 Clarification

This section clarifies the issues related to the event space (Robertson 2005) and the rank

equivalence of Lafferty and Zhai (2003).

3.1 Event space

Robertson (2005) argues that the event space Y of pY(t) is not the same as the event space

X 9 Y of pX�Yðs; tÞ or the event space Y of pY�XðtjsÞ where s is in X and t is in Y.

Therefore, he cautioned those who worked in developing language models for information

retrieval. However, it should be noted that both the event space Yfor pY(t) and the event

space Y of pY�XðtjsÞ are always subsets of the event space X 9 Y (or Y 9 X) for pX�Yðs; tÞ:
This observation enables us to obtain the marginal probability pY(t) from the more detailed

tuple events in both X and Y as follows.

We provide an interpretation of the marginal probability based on random sampling

similar to that of Robertson (2005), but we do not require the marginal probabilities to be

evenly distributed (although sometimes they can be). Using Robertson’s example, let an

event be a tuple (s, t) in the set X 9 Y of events where s is a star, t is a planet, X is a set of

stars and Y is a set of planets. In this paper, we ignore the magnetic field in (Robertson

2005) because if we know the particular star/planet, then we know whether the star/planet

has or has not a magnetic field. Let us randomly pick event tuples from an urn U that

contains the following three tuples: (s1, t11), (s1, t12) and (s2, t21). Assume that all these

tuples are equally likely to be randomly selected. The marginal probabilities for events in Y
are pX�Yðt11Þ ¼ pX�Yðt12Þ ¼ pX�Yðt21Þ ¼ 1=3: We can obtain this probability by sampling

the tuples from U and ignoring their first elements (i.e., X, or s1 and s2) of the selected

tuples. Likewise, we can obtain pX�Yðs1Þ ¼ 2=3 and pX�Yðs2Þ ¼ 1=3 by randomly sam-

pling the tuples from U and ignoring their second elements (i.e., Y, or t11, t12 and t21) of the

selected tuples. Therefore, we may obtain the marginal probabilities based on randomly

sampling tuples over the cross product space of X and Y, without the need to sample the

subspace X first and then Y, or vice versa (although we can do so).

As in Robertson (2005), the previous example shows that the probability pX�YðtÞ ¼ 1=3

is based on randomly picking a tuple of star and planet with equal likelihood. However,

Robertson (2005) indicated that this probability calculated using the marginal probability

will not be 1/3 if we assume that randomly picking a star is equally likely, and if randomly

picking a planet of a given star is also equally likely. Since the marginal probability

calculation is based on Kolmogorov’s axioms, and we assume that necessary condition 1

holds, the calculation must be accepted as ground truth. The only possibility to reconcile

pX�YðtÞ and its marginal probability calculation using Eq. 1 is not to assume that randomly

picking a star is equally likely nor randomly picking a planet given a star is necessarily

equally likely. In fact, there is no logical necessity that probability distributions are uni-

form. Language models typically leave some of the probability distributions unspecified

and later estimate the probability distributions rather than assuming the distributions are

uniform. While many language models are Bayesian probabilistic models, the Bayesian

prior probabilities (of these language models) are not necessarily uniformly distributed.

We summarize our discussion using probability generation trees as in Fig. 1 that shows

three different examples. Figure 1a is Robertson’s example where pX�YðtÞ is not the same

as calculating it based on the marginal probability using Eq. 1. Figure 1b is our example

that is consistent with the marginal probability calculation using Eq. 1, but the probability
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of picking a star randomly is not uniformly distributed (as explained earlier). Figure 1c is

our other example that is consistent with the marginal probability calculation using Eq. 1,

but the probability of picking a planet randomly is not uniformly distributed. This shows

that by not requiring that all probability distributions be uniformly distributed, the problem

raised by Robertson may not occur. In fact, there is no logical necessity that the probability

distributions are uniformly distributed.

Apart from assuming probabilities are uniformly distributed, there is a possibility that

asserting assumptions may lead to data inconsistencies for some probability distributions

(but not necessarily for all possible probability distributions). If we take Robertson’s

example (i.e., planets and stars), it is possible that estimating the probabilities resulted in

uniform probability distributions and data inconsistencies can arise. The underlying

problem seems to be the assumptions made as indicated earlier by Cooper (1995), instead

of the event space as Robertson suggested, because the corollary, lemma and theorem

derived from the probability axioms are true once the axioms are accepted while the

assumptions can be invalid. For example, if our model assumes that pX�YðsÞ ¼ 1=2 and

pX�YðtjsÞ ¼ 1=2; it will predict that pX�YðtÞ ¼ 1=4 or 1/2 depending on t. If our relative

frequency estimate of pX�YðtÞ is 1/3, then there are data inconsistencies between the

predicted and actual values. We believe that the problem of data inconsistencies is our

assumption about certain values that pX�YðsÞ or pX�YðtjsÞ should take, instead of the

different event spaces. In summary, it seems more appealing to question whether the

assumptions asserted lead to inconsistencies for some probability distributions. Let us start

by revisiting the rank equivalence claimed by Laffery and Zhai (2003).

3.2 Rank equivalence of Lafferty and Zhai

Figure 2 depicts the claim by Lafferty and Zhai (2003) on the rank equivalence between

the query likelihood and the log-odds ratio (i.e., between Box 1 and 2 in Fig. 2). Sepa-

rately, these probabilistic ranking functions derive the corresponding operational ranking

functions of their statistical component models, so they belong to the probabilistic models

at a level higher (or more general) than the statistical component model. These probabi-

listic models are more general in the sense that they have fewer details (e.g., assumptions

and component specifications) than the statistical component models. Also, they may be

related to the probability ranking principle (Robertson 1977) that forms the unified basis

Fig. 1 (a) Robertson’s example with uniform probability distributions for randomly picking stars with
probabilities fpX�Y ðsÞg; planets with probabilities fpX�Y ðtÞg and planets given a chosen star with
probabilities fpX�Y ðtjsÞg: The problem is that the product of pX�Y ðsÞ and pX�Y ðtjsÞ is inconsistent with the
marginal probability of pX�Y ðtÞ ¼ 1=3: (b) Our example that is consistent with Eq. 1 has equal likelihood of
picking a planet at random, but the probability (i.e., pX�Y ðsÞÞ of picking a star is not uniformly distributed.
(c) Our example that is consistent with Eq. 1 has equal likelihood of picking a star at random, but the
probability (i.e., pX�Y ðtÞÞ of picking a planet is not uniformly distributed
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for ranking documents [even for interactive retrieval (Fuhr 2008)] and for modeling the

evaluation of ranked lists (Wu et al. 2007).

Lafferty and Zhai (2003) claimed that the statistical component models of the log-odds

ratio are not rank equivalent to the statistical component language model (i.e., between

Box 3 and 4) because their probabilities are estimated differently. Apart from the issues

about probability estimation for establishing rank equivalence, the derivations and rank

equivalence relation assert different sets of assumptions. The impact of asserting multiple

sets of assumptions is important because the rank equivalence claimed by Lafferty and

Zhai (2003) will be purely theoretical if there does not exist a statistical component model

that is rank equivalent to both the log-odds ratio and the query likelihood. In other words, if

the log-odds ratio is not rank equivalent to statistical component language models (i.e.,

Box 1, 2 and 4 are not rank equivalent), or vice versa (i.e., Box 2, 1 and 3 are not rank

equivalent), then the rank equivalence for the higher probabilistic models has no direct

practical significance. This practical issue about rank equivalence is discussed in Sect. 6.

4 Rank equivalence

Showing two retrieval models are rank equivalence is an important theoretical task as it

may avoid the use of Eq. 1 without the need to assert necessary condition 1. Its practical

significance may imply that (a) there is no need to compare such models for better retrieval

effectiveness, and that (b) the model that may be carried out by a more time-space efficient

algorithm is preferred over slower ones. In this section, we discuss a motivating example of

rank equivalence, identify different types of rank equivalence relations, and discuss the

impact of different probability estimation methods on them. This discussion differs from

the equivalence of BIM and the novel language model by Roelleke and Wang (2006)

because (1) the BIM and their language model use the same probability estimation method

(i.e., relative frequency), (2) their language model ranks documents by a ratio of two query

likelihoods instead of a single query likelihood, (3) their equivalence relation does not

assert assumptions of Lafferty and Zhai, and (4) their equivalence relation makes an

assumption that the contribution to the retrieval status value from relevant documents is

constant.

Fig. 2 Rank equivalence between higher probabilistic models and between their related statistical
component models
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4.1 Motivating example

Lafferty and Zhai (2003) use rank equivalence to reconcile different probabilistic models.

For example, the two sides of the probabilities in the following equation are related by the

definition of conditional probability,

pXðdjq; rÞ ¼
pXðqjd; rÞpXðd; rÞ

pXðq; rÞ
; ð2Þ

where X ¼ D� Q� R (as in Wu et al. 2007), D is a set of documents, Q is a set of queries,

r is the relevance value, �r is the non-relevance value, R ¼ fr;�rg; d is a document in D, and

q is a query in Q. We are interested in Eq. 2, because (1) pXðdjq; rÞ is related to the

evaluation model (Wu et al. 2007) for the probability ranking principle (PRP as in Rob-

ertson 1977), (2) pXðqjd; rÞ is the query likelihood of the language model (e.g., Miller

et al., 1999), and (3) this rank equivalence illustrates that assumptions 1 and 2 of Lafferty

and Zhai are sufficient conditions in Sect. 6. Consequently, Eq. 2 can be considered as

reconciling two different probabilistic retrieval models.

Implicitly, the conditional probability, pXðdjq; rÞ; is valid for pXðq; rÞ[ 0: Interest-

ingly, pXðdjq; rÞ is rank equivalent (Wu et al. 2007) to the log-odds ratio of the RSJ model

by pXðrjd;qÞ assuming that pXðd; qÞ is a constant. However, this assumption is not true for

some language models because pXðd; qÞ of these language models is not a constant.

Otherwise, pXðqjdÞ becomes problematic for ranking as it is independent of q. This

motivates us to find another alternative to reconcile different probabilistic models using

rank equivalence instead of the equality as follows.

Suppose that the probability pXðdjq; rÞ on the left hand side (LHS) of Eq. 2 is estimated

by one model with a set S1 of assumptions and the probability on the right hand side (RHS)

of Eq. 2 is estimated by another model with another set S2 of assumptions. While the two

probabilistic models may not assign uniform probability distributions, it is possible that,

for some data set, the probability distributions estimated by the two retrieval models can

lead to inconsistencies as suggested by Robertson (2005). In general, assuming a certain

probabilistic relationship holds can lead to the exclusion of certain data distributions. In

other words, some data distributions contradict with the assumptions asserted. This

problem does not appear in the derivation by Lafferty and Zhai (2003) because the log-

odds ratio is equivalent to query likelihood of the language model on the basis of producing

the same ranking output, i.e., the orderings of the probabilities/similarities on both sides of

the equation are the same. Instead of Eq. 2 in the previous instructive example, we consider

an alternative type of rank equivalence between the evaluation model (Wu et al. 2007) for

PRP and the language model

pXðdjq; rÞ ¼
rank pHðqjd; rÞpHðd; rÞ

pHðq; rÞ
;

where X is the event space as in (Wu et al. 2007), H is the event space of a language

model, ¼rank
is the binary relation operator for rank equivalence (as in Lafferty and Zhai

2003). Because these are two different event spaces, the RHS of the previous relation may

relate to the PRP because only the evaluation model assumes that pXðd; qÞ is a constant,

and not the language model on the RHS. We call such rank equivalence between two

different probabilistic models defined over two different event spaces weak rank equiva-

lence. Weak rank equivalence can be identified by observing that the event spaces on its

two sides are different.
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For illustration, Table 1 shows an example of rank equivalence between Model A and

Model B. Here, we suppose that Model A and Model B use different methods to estimate

the probabilities. The probabilities in bold and underlined font are used for ranking the

documents. In this example, the probabilities of Model A for ranking are different from

the corresponding probabilities of Model B for ranking, but the assigned ranks of the

documents are the same for both Model A and B. For Model B, pHðq; rÞ is not necessary

for ranking, but it is included here for clarity of presentation. For claiming that Model A

is rank equivalent to Model B, the ranking using Model A should be the same as that

using Model B for all queries and for all collections. To make such a claim, therefore,

there is a practical problem of finding such probabilities or such probability estimation

methods that lead to rank equivalence between Model A and B, for all queries and for all

collections.

One possible approach that may guarantee two probabilistic models are rank equivalent

for all queries and for all collections assumes that the probabilities on both sides of a rank

equivalence relation are derived from a single event space of an underlying (random)

experiment as suggested by Robertson (2005). We call this type of rank equivalence strict

rank equivalence which can be identified easily because the probabilistic models partici-

pating in the rank equivalence relation have the same event space. Even when the

probabilistic models are strict rank equivalent, there may be an additional problem that

these models estimate probabilities differently from the same random experiment as

indicated by Lafferty and Zhai (2003). If the probabilities are measured differently for

these different probabilistic models operating with the same event space, will these

probabilistic models not necessarily be rank equivalent?

4.2 Problem with different probability estimation methods

To answer the previous question, one method to show that these models are strict rank

equivalent is to prove such equivalence mathematically by finding how the probability

estimates of both sides of the rank equivalence are related. For illustration, suppose a

probability that is estimated by relative frequency is denoted by the superscript f. For

example, pf
Xðdjq; rÞ is the relative frequency estimate of pXðdjq; rÞ: Likewise, suppose a

probability that is estimated by additive smoothing (e.g., Lidstone 1920) is denoted by the

superscript a. In Eq. 2, suppose that the probability on the LHS is estimated by relative

frequency and the probabilities on the RHS are estimated by additive smoothing. Since

these probabilities estimated differently are not expected to be the same, they are not

expected to be strict rank equivalent. However, when we want to claim that the language

model is rank equivalent to the evaluation model (Wu et al. 2007), they are required to be

strict rank equivalent by demanding

Table 1 Hypothetical ranking results of three documents using two different models based on the prob-
abilities on the different sides of the conditional probability in Eq. 2

Rank Document Model A Model B

pXðdjq; rÞ pHðqjd;rÞpHðd;rÞ
pHðq;rÞ pHðqjd; rÞ pHðq; rÞ pHðd; rÞ

1 d1 0.70 0.40 0.10 0.10 0.40

2 d2 0.20 0.35 0.10 0.10 0.35

3 d3 0.10 0.25 0.10 0.10 0.25
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p f
Xðdjq; rÞ ¼

rank pa
Xðqjd; rÞ � pa

Xðd; rÞ
pa

Xðq; rÞ
¼rank

pa
Xðqjd; rÞ � pa

Xðd; rÞ: ð3Þ

The probabilities estimated by additive smoothing (e.g., Lidstone 1920) are linearly related

to their relative frequency estimates:

pa
XðxÞ �

f ðxÞ þ d
N þ d � V ¼ k � pf

XðxÞ þ g

where f(x) is the occurrence frequency of x, N is the total frequency, V is the vocabulary

size, d is a small additive constant for smoothing, pf
XðxÞ ¼ f ðxÞ=N; k ¼ N=ðN þ d � VÞ and

g = d/(N + d � V). The RHS of relation 3 can be rewritten as

pa
Xðqjd; rÞ � pa

Xðd; rÞ ¼ k2 � pf
Xðqjd; rÞ � p

f
Xðd; rÞ þ g � k � ðpf

Xðqjd; rÞ þ pf
Xðd; rÞÞ þ g2:

Substituting the above equation into relation 3 shows that the ranking by pa
Xðqjd; rÞ �

pa
Xðd; rÞ is not rank equivalent to pf

Xðdjq; rÞ in general. However, for some special case,

relation 3 holds. If pf
Xðd; rÞ is a constant, then

pa
Xðqjd; rÞ � pa

Xðd; rÞ ¼ k2 � pf
Xðd; rÞ þ g � k

h i
� pf

Xðqjd; rÞ þ g � k � pf
Xðd; rÞ þ g2

¼rank
pf

Xðqjd; rÞ � p
f
Xðd; rÞ ¼

rank
pf

Xðdjq; rÞ:

Here, we want to show that even different estimation methods may lead to strict rank

equivalence under specific conditions, albeit the current example condition (i.e., pf
Xðd; rÞ is

a constant) does not invoke the assumptions of Lafferty and Zhai, and it may not be

realistic in practice. While it is obvious that two different estimation methods may lead to

different ranking, it might be possible for some (unknown) probabilistic models estimated

using different estimation methods to be strict rank equivalent. Given this possibility, there

may be a reason other than the use of different probability estimation methods, which

explains why the statistical component language model is not strict rank equivalent to the

statistical component model of the log-odds ratio.

4.3 Equivalence between probabilistic and statistical component models

When a statistical component model is derived from a probabilistic model at a higher level,

such a statistical component model may have data inconsistencies (e.g., Cooper 1995). For

example, pXðdjq; rÞ can be rewritten in terms of its components

pXðdjq; rÞ � pXðAd1; . . .;Adnjq; rÞ; ð4Þ

where a document is rewritten as a set of n attributes from Ad1 to Adn. If we assume that

attributes are conditionally independent, then

pXðAd1; . . .;Adnjq; rÞ ¼
Yn

i¼1

pXðAdijq; rÞ: ð5Þ

While we assumed identity 4 holds, it may not hold in practice. We clarify this problem

using a schematic diagram as shown in Fig. 3. More specifically, probabilistic model A and

its statistical component version B in Fig. 3 correspond to the LHS and the RHS of identity

4, respectively. Suppose model A directly measures pXðdjq; rÞ by relative frequency

counting, and suppose method 1 of model A assigns this measured probability as the
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probability on the LHS of identity 4. Suppose model B measures pXðAdijq; rÞ by relative

frequency counting, and pXðAd1; . . .;Adnjq; rÞ is calculated by Eq. 5. In most practical

cases, the following does not hold:

pf
Xðdjq; rÞ ¼

Yn

i¼1

pf
XðAdijq; rÞ:

This is partly because

X

d2D

pf
Xðdjq; rÞ ¼ 1 6¼

X

d2D

Yn

i¼1

pf
XðAdijq; rÞ:

A common remedy is to use Bayes’ theorem (as done for language models, e.g., Hiemstra

2002):

pf
Xðdjq; rÞ ¼

Qn
i¼1 pf

XðAdijq; rÞP
d2D

Qn
i¼1 pf

XðAdijq; rÞ
:

However, this assumes that necessary condition 1 holds for different documents. An

alternative without assuming that such a condition holds uses strict rank equivalence to link

these probabilities:

pf
Xðdjq; rÞ ¼

rank
Yn

i¼1

pf
XðAdijq; rÞ:

Despite that we use the same probability estimation method, and we use a probabilistic

model and its derived statistical component version, there will still be no guarantee that the

equivalence relation will hold for all queries and for all collections if we measure the

probabilities on its LHS and calculate the derived probability ratio using measured prob-

abilities on its RHS. To avoid the inconsistency between the probabilistic model and its

statistical component model, the probability of the former probabilistic model is assigned

with the probability derived from its latter statistical component model. For our previous

example, the probability on the LHS of identity 4 is not estimated from the event space

Fig. 3 A schematic diagram of strict rank equivalence between two probabilistic/statistical models
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even though it can be done. Instead, this probability is assigned with the calculated

probabilities that are derived from the measured probabilities on the RHS of identity 4. In

this case, the probability on the LHS of identity 4 represents the model’s belief that a

certain event will happen. This option to avoid inconsistencies by probability assignment is

not available when two statistical component models are strict rank equivalent. This is

because the two statistical component models need to estimate their probabilities from the

same event space. This suggests that even if the same probability estimation method is

used for both statistical component models, these models may not be strict rank equivalent.

4.4 Equivalence between statistical component models

Let us discuss an instructive example to appreciate the difficulty of making two statistical

component models rank equivalent. Suppose we have two such models for the LHS and

RHS of Eq. 2:

pXðdjq; rÞ ¼
rank Qn

i¼1

pf
XðAdijq; rÞ

pXðqjd; rÞ � pXðd; rÞ ¼
rank

pf
Xðd; rÞ �

Qn

i¼1

pf
XðAqijd; rÞ;

where Aqi is the i-th attribute of the query q. The probabilities on the LHS of the above

strict rank equivalence relations are the probabilities of the probabilistic models without

any specified probability estimation methods. The probabilities on the RHS of the above

strict rank equivalence relations are the measured probabilities that are estimated by the

relative frequency method f. When these probabilities are substituted into equation 2, and

the equality is changed to strict rank equivalence, i.e.,

Yn

i¼1

pf
XðAdijq; rÞ ¼

rank
pf

Xðd; rÞ �
Yn

i¼1

pf
XðAqijd; rÞ;

it becomes difficult to prove the above relation is true for all queries and for all collections.

The reason is not because different estimation methods are used. Actually, these estimation

methods are identical on both sides of the above relation. The reason is that the i-th
attribute of the document, Adi, and the i-th attribute of the query q, Aqi, are the same

attribute but of different objects. Even if we make the same attributes of different objects to

have the same value for strict rank equivalence, i.e., Adi = Aqi, the conditioning part of

these two probabilities will be different. For the conditional probabilities on the LHS, we

count the frequencies for a single query q, where as we count the frequencies of a single

document d for the conditional probabilities on the RHS. Consequently, it is difficult to

prove that the previous strict rank equivalence relation holds for all queries and for all

collections. This discussion will be inconsistent with the remark by Laffery and Zhai

(2003) about ‘‘the component models (that are) estimated quite differently’’ (added our

bracketed text in the quotation) if this remark solely refers to the different probability

estimation methods used (e.g., additive smoothing (Lidstone 1920) or absolute discounting

(Ney et al. 1994)). However, it will be consistent with their remark if ‘‘estimated quite

differently’’ means getting different probability values because of the use of different

measured probabilities and/or different probability estimation methods.

Roelleke and Wang (2006) show that it is possible to create a novel statistical component

language model using query likelihood ratio that is rank equivalent to the BIM without using

the rank equivalence of Lafferty and Zhai (2003). This is done using models that employ the
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same probability estimation methods. Is it possible that two different statistical component

models will be strict rank equivalent to each other if they use different probability estimation

methods? To illustrate this possibility, suppose we are given that
Yn

i¼1

pF
XðAdijðAq1; . . .;AqnÞ; rÞ ¼

rank
pF

Xðd; rÞ
Yn

i¼1

pF
XðAqijðAd1; . . .;AdnÞ; rÞ;

is there a probability estimation method b such that

Yn

i¼1

pF
XðAdijðAq1; . . .;AqnÞ; rÞ ¼

rank
pb

Xðd; rÞ
Yn

i¼1

pb
XðAqijðAd1; . . .;AdnÞ; rÞ?

Suppose the probability estimation method, b, is related to its corresponding relative

frequency estimation method F:

pb
XðxÞ � c � pF

XðxÞ
k

where c is a normalization constant and k is a parameter of this estimation method. If

k [ 1, then smaller relative frequency probability estimates will be even smaller. This

reduces the effect of over-estimation by the relative frequency estimation method (i.e., the

maximum likelihood estimator) when the frequency count is small. When the frequency

count is zero, this method maintains that the probability is zero. To avoid zero probabil-

ities, 0.5 is added to the frequency counts and the total frequency as in the binary

independence model (BIM of Robertson and Spärck 1976), i.e.,

pF
XðxÞ �

f ðxÞ þ 0:5

N þ 0:5
:

Taking the logarithm, the probabilities estimated by these two methods are related:

log pb
XðxÞ ¼ log cþ k log pF

XðxÞ:

Using this equality, the query likelihood estimated by method b is rank equivalent to the

query likelihood estimated by relative frequency, i.e.,

log pb
Xðd; rÞ þ

Xn

i¼1

log pb
XðAqijðAd1; . . .;AdnÞ; rÞ

¼ k log pF
Xðd; rÞ þ log c1 þ n log c2 þ k

Xn

i¼1

log pF
XðAqijðAd1; . . .;AdnÞ; rÞ

¼rank
log pF

Xðd; rÞ þ
Xn

i¼1

log pF
XðAqijðAd1; . . .;AdnÞ; rÞ;

where c1 is the normalization constant for estimating pb
Xðd; rÞ; c2 is the normalization

constant for estimating pb
XðAqijAd1; . . .;Adn; rÞ and k is a parameter of estimation method b.

In general, we derive

pXðrjd; qÞ ¼
rank pXðdjq; rÞ

pXðd; qÞ
¼rank
Qn

i¼1 pF
XðAdijq; rÞ

pf
Xðd; qÞ

¼rank pb
Xðd; rÞ � pb

Xðqjd; rÞ
pb

Xðd; qÞ
¼rank pb

Xðd; rÞ �
Qn

i¼1 pb
XðAqijd; rÞ

pb
Xðd; qÞ

:

This illustrates that it is possible that two statistical component models are rank equivalent

even though the probability estimation methods are different. Therefore, different proba-

bility estimations do not necessarily lead to different ranking.
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Strict rank equivalence is related to weak rank equivalence under some special cir-

cumstances. Suppose we have two retrieval models, A and B. They rank documents by the

probabilities, pX;AðxÞ and pX;BðyÞ; respectively, where x and y are some expression of

(conditional) events, and pX;Cð�Þ is model C’s probability that is defined over the event

space X: The following obvious remark can be observed:

Remark 1 If pX;AðxÞ ¼
rank

pX;BðyÞ and the event space H is a superset of the event space X;
and pX;BðyÞ ¼

rank
pH;BðyÞ; then pX;AðxÞ ¼

rank
pH;BðyÞ:

For H � X; pH;BðyÞ is a marginal probability since y is in X and so it specifies only a

subset of attributes in H: This remark illustrates that weak rank equivalence is possible

under specific conditions.

5 Combining other models

In this section, we show that the language model by Ponte and Croft (1998) is rank

equivalent to the language model in Lafferty and Zhai (2003) using their assumptions 1 and

2. This enables us to deal with both types of language models together in subsequent

sections. In addition, we show that the log-odds ratio is rank equivalent to minus the

probability of non-relevance (Wu et al. in press) that relates to the TF-IDF term weights.

As Lafferty and Zhai (2003) have already shown, both the log-odds of the RSJ model

and the query likelihood of language models can be thought of as estimating and/or ranking

on the basis of the log-odds ratio, OXðrjq; dÞ (Fuhr 1992), that is defined over the event

space X:

OXðrjd; qÞ � log
pXðrjq; dÞ
pXð�rjq; dÞ

� �
:

Lafferty and Zhai (2003) further show that

OXðrjq; dÞ ¼
rank

log pXðqjd; rÞ; ð6Þ

where ¼rank
denotes the rank equivalence relation. Equation 6 assumes that the following

two statistical (conditional) independence assumptions (Lafferty and Zhai 2003) hold

without asserting any assumption of uniform probability distributions:

Assumption 1 pXðd; qj�rÞ ¼ pXðdj�rÞ � pXðqj�rÞ:

Assumption 2 pXðd; rÞ ¼ pXðdÞ�pXðrÞ:

For binary relevance, the following holds:

pXðdÞ ¼ pXðd; rÞ þ pXðd;�rÞ: ð7Þ

Together with assumption 2, the previous condition logically implies pXðd;�rÞ ¼ pXðdÞ �
pXð�rÞ; because, from Eq. 7, we have:

pXðd;�rÞ ¼ pXðdÞ � pXðd; rÞðapplying equation 2Þ
¼ pXðdÞ � pXðdÞ � pXðrÞ
¼ pXðdÞ � ð1� pXðrÞÞ
¼ pXðdÞ � pXð�rÞ:

ð8Þ

Hence, Eq. 8 is a consequence of assumption 2 in Lafferty and Zhai (2003).
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The query likelihood function (Lafferty and Zhai 2003) is defined as pXðqjd; rÞ: This

has been used as the basis of ranking by a number of language models (e.g., Miller et al.

1999). Alternatively, another ranking function,

pXðqjdÞ

is also commonly found in a variety of language models (e.g., Ponte and Croft 1998;

Hiemstra 1998; Berger and Lafferty 1999; Song and Croft 1999; Hiemstra 2000; Spärck

et al. 2003; Zhai and Lafferty 2004; Gao et al. 2004) for information retrieval. We will

show that these two ranking functions of language models are rank equivalent to each other

if assumptions 1 and 2 are true. Given that:

pXðq; dÞ ¼ pXðq; d; rÞ þ pXðq; d;�rÞ; ð9Þ

we rewrite the query likelihood:

pXðqjd; rÞ ¼
pXðq; dÞ � pXðq; d;�rÞ

pXðd; rÞ

¼ pXðq; dÞ � pXðq; dj�rÞ � pXð�rÞ
pXðd; rÞ

ðapplying assumption 1Þ

¼ pXðq; dÞ � pXðdj�rÞ � pXðqj�rÞ � pXð�rÞ
pXðd; rÞ

ðapplying assumption 2Þ

¼ pXðqjdÞ
pXðrÞ

� pXðd;�rÞ � pXðqj�rÞ
pXðdÞ � pXðrÞ

:

Applying Eq. 8, the previous equation is simplified to

pXðqjd; rÞ ¼
pXðqjdÞ
pXðrÞ

� pXðdÞ � pXð�rÞ � pXðqj�rÞ
pXðdÞ � pXðrÞ

¼ pXðqjdÞ
pXðrÞ

� pXð�rÞ � pXðqj�rÞ
pXðrÞ

:

Since the second term on the RHS of the previous equation only depends on the query q,

we simplify the previous equation further using strict rank equivalence,

pXðqjd; rÞ ¼
pXðqjdÞ
pXðrÞ

� pXð�rÞpXðqj�rÞ
pXðrÞ

¼rank pXðqjdÞ
pXðrÞ

¼rank
pXðqjdÞ:

Since logarithm is an order-preserving transformation, it follows that the Lafferty and Zhai

model (2003) and Ponte and Croft model (1998) are strict rank equivalent with the log-

odds ratio:

OXðrjq; dÞ ¼
rank

log pXðqjd; rÞ ¼
rank

log pXðqjdÞ: ð10Þ

provided that assumptions 1 and 2 hold (an alternative derivation is shown in Appendix I),

and Eq. 9 holds. Even though the relevance random variable does not appear in the Ponte

and Croft (1988) model, the information in the relevance random variable might be

embedded in the implicit assumptions of the model.

Recently, Wu et al. (in press) showed that the TF-IDF term weight is derived from the

probabilistic retrieval model that ranks on the basis of � log pXð�rjd; qÞ: This ranking is

strict rank equivalent to the log-odds ratio:

OXðrjd; qÞ ¼
rank

log pXðrjd; qÞ ¼
rank� log pXð�rjd; qÞ; ð11Þ

given that pXðrjd; qÞ þ pXð�rjd; qÞ ¼ 1 (Eq. 1.1. in Laffery and Zhai 2003).
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6 Tackling the assumptions

Assumptions 1 and 2 bring the work by Lafferty and Zhai (2003) and by Ponte and Croft

(1998) on the same ground of the log-odds ratio and it is time to question whether these

assumptions are reasonable. Intuitively, assumption 2 is reasonable since one does not

expect that documents and relevance are statistically dependent without specifying the

query. That is, the marginal probability, pXðd; rÞ; is determined by the product of two

marginal probabilities, pXðdÞ and pXðrÞ: Note that assumption 2 does not state the like-

lihood of retrieving a document is uniformly distributed. For example, documents that have

more terms are more likely to be matched and therefore retrieved (but whether these

documents are relevant or not are unknown). Although assumption 2 implies that

pXðrjdiÞ ¼ pXðrjdjÞ ¼ pXðrÞ; pXðrÞ may be different from pXð�rÞ; and pXðr; diÞ may be

different from pXðr; djÞ because pXðdiÞ may be different from pXðdjÞ: Note that pXðrjdÞ is a

marginal probability that is aggregated for all queries given a document d, so this prob-

ability has no relationship with a particular query q. It should not be confused with p(L|d)

of the BIM (Spärck et al. 2000) where L maps to relevance. This is because BIM is defined

for a single query, so p(L|d) of the BIM is actually pXðrjd; qÞ (and not the marginal

probability pXðrjdÞÞ:
Assumption 1 is specified by conditional independence that is more complex to justify.

First, we note that many probabilistic retrieval models have asserted assumption 1 to hold

(e.g., Yu and Salton 1976; Robertson et al. 1982a, b), including the binary independence

model of Robertson and Spärck (1976), according to Cooper (1995). The assertion of

assumptions 1 and 2 together does not fall into the data inconsistency problem discussed by

Cooper (1995) and discovered by Robertson (1974) because the conditional probability in

assumption 2 here only assumed the independence between documents and relevance,

instead of documents and queries (as in Cooper, 1995). Second, if the following

assumption holds:

Assumption 3 pXðd; q;�rÞ � pXð�rÞ ¼ pXðd;�rÞ � pXðq;�rÞ

then we can derive assumption 1 instead of asserting it. This is obtained by dividing

pXð�rÞ2 on both sides of assumption 3, which does not need to assume that pRð�rÞ[ 0:
For the probabilistic models at a higher level (Fig. 2), we show that

Sufficient condition 1 Assumptions 1 and 2 of Lafferty and Zhai are sufficient condi-

tions for the rank equivalence between the log-odds ratio and the query likelihood.

Since the rank equivalence between the log-odds ratio and the query likelihood is

already established by Lafferty and Zhai the remaining task is to show that these

assumptions are not necessary conditions. This is done by establishing the strict rank

equivalence using a different set of assumptions (that are mentioned as uniform distribu-

tion by Robertson 2005):

Assumption 4 pXðd; qÞ is a constant (i.e., uniformly distributed).

Assumption 5 pXðd; rÞ is a constant (i.e., uniformly distributed).

Using these assumptions, we deduce that pXðrjd; qÞ ¼
rank

pXðdjq; rÞ ¼
rank

pXðqjd; rÞ: This

relation is applicable to a special form of the hidden Markov language model (HMLM) of

Miller et al. (1999) without asserting assumptions 1 and 2 of Lafferty and Zhai (2003).

However, these two assumptions are not applicable to language models (e.g., Ponte and

Croft 1998) which rank documents by pXðqjdÞ: This is because assumption 4 implies that
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Eq. 10 does not hold as the document ranking is problematic (i.e., it assigns the same value

for document ranking across different queries) for such language models. For BIM, this

assumption does not cause any problems, because pXðd; qÞ is a marginal probability

combining the probability of relevance and the probability of non-relevance.

Lafferty and Zhai (2003) have claimed that while probabilistically the log-odds is rank

equivalent to the query likelihood, statistical component models of the log-odds ratio and

the query likelihood are not rank equivalent. In their words,

... the two approaches (based on the log-odds or the query likelihood) are not

equivalent from a statistical point of view, since the component models are estimated

quite differently. (page 2, Lafferty and Zhai 2003)

(added our bracketed text in the above quotation). Lafferty and Zhai (2003) do not mention

whether the statistical component language model (e.g., Berger and Lafferty 1999) can be

derived from the log-odds ratio at a higher probabilistic modeling level (i.e., Box 1, 2 and 4

in Fig. 2). Such derivations are important for claiming that the statistical component

language models are strict rank equivalent to the log-odds ratio. Similarly, they do not

mention whether the statistical component model (e.g., BIM [Robertson and Spärck 1976])

of the log-odds ratio can be derived from the query likelihood at a higher probabilistic

modeling level (i.e., Box 2, 1 and 3 in Fig. 2). Such derivations are important for claiming

that the statistical component models of the log-odds ratio are strict rank equivalent to the

query likelihood. These derivations require the assumptions by Lafferty and Zhai (2003) to

be asserted with the assumptions of the related statistical component models.

Let us focus on the strict rank equivalence between the log-odds ratio at the higher

probabilistic level and the statistical component language models. We identify at least

three possible claims about such a strict rank equivalence relation:

Claim 1 If assumptions 1 and 2 by Laffery and Zhai (2003) are true, then no statistical

component language models are strict rank equivalent to the log-odds ratio that is at the

higher probabilistic level.

Claim 2 If assumptions 1 and 2 by Laffery and Zhai (2003) are true, then all statistical

component language models are strict rank equivalent to the log-odds ratio that is at the

higher probabilistic level.

Claim 3 If assumptions 1 and 2 by Laffery and Zhai (2003) are true, then some statistical

component language model is strict rank equivalent to the log-odds ratio that is at the

higher probabilistic level.

We argue for claim 3 by showing that claims 1 and 2 are not tenable. First, we assert

that claim 1 is true and disprove it by a counter example. For ranking using the language

model by Lafferty and Zhai (2003), we estimate the probability pXðqjd; rÞ and assume their

assumptions 1 and 2 hold so that the language model corresponds to the log-odds ratio.

Since

log pXðqjd; rÞ ¼
rank

log
pXðq; d; rÞ
pXðd; rÞ

¼rank
log

pXðq; d; rÞ
pXðdÞ

;

we can directly estimate pXðq; d; rÞ and derive pXðdÞ based on the marginal probability

calculation using Eq. 1, i.e.,

pXðdÞ �
X

q2Q

X

x2R

pXðd; q; xÞ:
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Since only pXðq; d; rÞ is estimated from data and the others are derived from it based on the

assumptions, there are no problematic rankings (unlike the planet and star example of

Robertson). If we further simplify the above (see Appendix I) and replace the above

ranking function by the one in (Ponte and Croft 1998) (i.e., log pXðqjdÞÞ; then we need to

simply estimate pXðq; dÞ from the data and derive the marginal probability pXðdÞ using Eq.

1 based on the estimated joint probabilities fpXðq; dÞg; i.e., pXðdÞ ¼
P

q2Q pXðq; dÞ
assuming that necessary condition 1 holds in this case.

Similarly, to show that claim 2 is not tenable, we assert that it is true, and find a counter

example as follows. A special form of the HMLM by Miller et al. (1999) is strict rank

equivalent to the query likelihood given assumptions 1, 2 and 5 hold as follows. By Eqs.

10, 11 and assumption 5, we deduce that

pXðrjd; qÞ ¼
rank

pXðqjd; rÞ ¼
rank

pXðd; rjqÞ:

The previous relation is rewritten as

pXðr; d; qÞ
pXðd; qÞ

¼rank pXðd; r; qÞ
pXðqÞ

:

Since pXðr; d; qÞ ¼ pXðd; r; qÞ; we deduce that

pXðd; qÞ ¼
rank

pXðqÞ

where pXðqÞ is a marginal probability. By the above relation and by Eq. 10 that asserts

assumptions 1 and 2 of Lafferty and Zhai hold, we obtain

pXðqjd; rÞ ¼
rank

pXðqjdÞ ¼
rank

pXðq; dÞ=pXðdÞ ¼
rank

pXðqÞ=pXðdÞ ¼
rank

1=pXðdÞ:
This ranking is problematic because it is only dependent on the document and inde-

pendent of the query (i.e., assigning the same rank to a document for all queries). If this

special form of the HMLM is strict rank equivalent to the log-odds ratio via assumptions 1

and 2 of Lafferty and Zhai, then the resultant ranking will be problematic as the ranking is

query independent. This shows that claim 2 does not hold. Since both claim 1 and 2 do not

hold, claim 3 holds.

When deriving the strict rank equivalence between the statistical component models of

the log-odds ratio and the query likelihood, assumptions 1 and 2 by Lafferty and Zhai are

asserted with the model-specific assumptions of these statistical component models. Again,

there are three possible claims:

Claim 4 If assumptions 1 and 2 by Laffery and Zhai (2003) are true, then no statistical

component models of the log-odds ratio are strict rank equivalent to the query likelihood

that is at the higher probabilistic level.

Claim 5 If assumptions 1 and 2 by Laffery and Zhai (2003) are true, then all statistical

component models of the log-odds ratio are strict rank equivalent to the query likelihood

that is at the higher probabilistic level.

Claim 6 If assumptions 1 and 2 by Laffery and Zhai (2003) are true, then some statistical

component model of the log-odds ratio is strict rank equivalent to the query likelihood that

is at the higher probabilistic level.

Inf Retrieval (2008) 11:539–561 555

123



When all statistical component models (like the BIM) of the log-odds ratio are defined

for single queries, such models are making the following singleton query assumption in the

event space, X:

Assumption 6 Q = {q}.

This assumption implies that pXðdjrÞ ¼ pXðdjq; rÞ and pXðdj�rÞ ¼ pXðdjq;�rÞ: As a

result, the log-odds ratio becomes:

OXðrjq; dÞ ¼
rank

log
pXðdjq; rÞ
pXðdjq; �rÞ

� �
ðapplying assumption 6Þ

¼rank
log

pXðdjrÞ
pXðdj�rÞ

� �
ðapplying assumption 2Þ

¼rank
log 1½ �:

Therefore, claim 5 does not hold. Claim 4 will hold if the statistical component models

of the log-odds ratio are defined for single queries. However, claim 4 will not hold if we

extend the statistical component models (e.g., the BIM) of the log-odds ratio for multiple

queries as in Lafferty and Zhai (2003). In the case of the BIM, we use a group of such

BIMs for the set of queries such that each query is assigned with a BIM. Since both claim 4

and claim 5 do not hold, claim 6 holds. In summary, we conclude that the rank equivalence

claimed by Lafferty and Zhai (2003) has immediate practical significance because some

statistical component language model is rank equivalent to the log-odds ratio, and some

statistical component model of the log-odds ratio is rank equivalent to the query likelihood.

7 Topic variable

In Sect. 2, we have shown that it is possible to enlarge the event space by performing a

cross-product with other event spaces. This enlargement of the event space is the same as

the problem of missing (hidden) variables. For probabilistic information retrieval, one

variable that seemed to be missing is the ‘‘conceptual’’ user information need. When we

consider a query q, q is a (textual) description or (computer) representation of the user

information need. It is possible that many different queries are referring to the same user

information need (e.g., Robertson 2005; Zhai and Lafferty 2006). For instance, the TREC

user information need (called a topic) in ad hoc retrieval is specified by multiple types of

queries (e.g., title queries, concept queries and narrative queries). We believe that the user

information need is an important hidden variable because it can clarify the confusion

between query text and the identification of the user information need.

Many of the probabilistic retrieval models deal with a single user information need (e.g.,

BIM) and it does not seem to be necessary to model it explicitly because the query

representing it is already unique. This becomes important when reconciling different

retrieval models when one model deals with a single request and another model deals with

multiple requests. From the perspective of probabilistic modeling, if the probabilistic

retrieval model needs the marginal probabilities without query dependence (e.g., pXðd; rÞÞ;
these marginal probabilities are calculated using Eq. 1 that requires necessary condition 1

to hold. This condition is satisfied by making each query text to be distinct from each other.

This is done by adding an identifier for the user information need to the query. Apart from

modeling, a web query may contain different kinds of information (like session identifiers,

user profiles, etc.). In this case, the distinction between a topic and a query may be helpful
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because many different queries may be generated for the same user information need, and

because different user information need may generate the same query (i.e., when the query

text is ambiguous). Furthermore, documents are considered to be relevant to the user

information need and not on the basis of being relevant to a piece of query text. Based on

this, we show later that the introduction of the user information need into the probabilistic

model enables language models to perform (pseudo) relevance feedback which has been

identified to be difficult before (Robertson 2005).

For presentation clarity, we treat the user information needs as topics and we propose to

add a topic set T so that the event space is:

W ¼ Q� T � D� R:

Equation 10 is considered as a notation convenience of Eq. 12:

log
pWðrjq; d; tÞ
pWð�rjq; d; tÞ

� �
¼rank

log pWðq; tjd; rÞ ¼
rank

log pWðq; tjdÞ ð12Þ

by taking away the particular topic t and the topic set T in Eq. 12. For Eq. 12 to hold, we

need to assert assumption 2 and we need to modify assumption 3 to assumption 7:

Assumption 7 pWðd; q;�r; tÞ � pWð�rÞ ¼ pWðd;�rÞ � pWðq;�r; tÞ:

The above assumption does not imply that any of the above probability distributions are

uniform. Details of the derivations to obtain Eq. 12 are in Appendix II.

The topic variable bridges the difference in representing the query by the RSJ

model and the language models as follows. According to Robertson (2005), the query

in the RSJ model is supposed to be a topic identifier that uniquely identifies the topic

(although not explicitly written down) where as the query in the language model is a

feature vector or a text string. We reconcile these differences by adding the topic

variable so that the query q in Eq. 12 is interpreted as a feature vector/text string as

in the language models and the tuple (q, t), which is a combination of the query q and

the topic t in Eq. 12. This combination provides a unique value to identify the

particular topic as required by the RSJ model. This unique value for each query

ensures that the necessary condition 1 for calculating marginal probabilities holds. For

example, this is needed for estimating the marginal probability, pWðdÞ ¼P
q2Q pWðq; dÞ; from the estimated joint probabilities, fpWðq; dÞg for the language

model by Ponte and Croft (1998).

Based on Eq. 12, (pseudo) relevance feedback for language models is the same as the

usual (pseudo) relevance feedback based on the vector space model. The language model

ranks on the basis of the expanded query q0 by reformulating the initial query q using the

feedback information, i.e., logpWðq0; tjd; rÞ: Since relevance is defined in terms of the topic

t, the same set of relevance is used for both query q and query q0. This facilitates a single

topic to associate with any number of pieces of query text. Conversely, a piece of query

text can associate with any number of topics since a piece of query text can be ambiguous.

In practice, the topic variable is already used in open IR evaluation workshops (e.g.,

TREC, INEX and NTCIR). A query text string is the concatenation of the topic identifier

with the sequence of query terms. When this query text string is processed into a vector, the

query vector may contain the unique topic identifier. Since the topic identifier does not

appear in any documents, it does not match with any documents and it does not affect

document ranking. In practice, most query processing modules in IR systems filter the

topic identifiers.
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For notation convenience, it is possible to drop T in the probabilistic retrieval models as

in the past because it is clear that the probabilities are defined for a particular topic, and

that relevance is defined in terms of the topic and not in terms of the query. With the advent

of more sophisticated web query processing, the topic random variable appears to be

helpful to distinguish information needs and query text, as well as reconciling different

probabilistic retrieval models.

8 Summary

It seems that if we accept Kolmogorov’s probability axioms and if necessary condition 1

holds, then the marginal probability will follow immediately. However, Robertson (2005)

highlights the significance of the event space when reconciling different probabilistic

models by rank equivalence (Lafferty and Zhai 2003). In this paper, we highlight that,

perhaps, the assumptions made in the retrieval models or in the unification of different

models need to be questioned as well. Apart from looking at event spaces, it seems that it is

appealing to question whether multiple probability distributions can be assumed to be

uniformly distributed simultaneously without causing the probabilistic models to produce

problematic ranking. We have also shown that the probability of relevance (Robertson

1977) can be considered as the common ground (as in Eq. 10) of the earlier language

model by Lafferty and Zhai (2003), as well as the earlier language model by Ponte and

Croft (1998) that requires assumptions 1 and 2 to hold (provided that suitable probabilities

can always be estimated). This implies that under specific conditions (i.e., when

assumptions of Laffery and Zhai are true) the relevance random variable may be implicit in

the ranking formula. Assumption 1 is mentioned in previous retrieval model design (e.g.,

Robertson et al. 1982b) and it can be replaced by assumption 3 that does not require any

additional condition to hold. Assumption 2 seems intuitively plausible when its proba-

bilities are marginal probabilities. We show that the rank equivalence claimed by Lafferty

and Zhai (2003) has practical significance because some statistical component language

model is strict rank equivalent to the log-odds ratio, and some statistical component model

of the log-odds ratio is strict rank equivalent to the query likelihood. In this case,

assumptions 1 and 2 are the sufficient conditions for the rank equivalence between the log-

odds ratio and the query likelihood. While some of the earlier probabilistic models do not

include the user information need (called the topic) as a random variable for notation

convenience, we suggest adding the topic random variable in the probabilistic retrieval

models for notation clarity when these models deal with multiple requests.
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Appendix I: Alternative derivation

According to the Lafferty and Zhai (2003) model, the ranking formula (i.e., Eq. 1.18 in

Lafferty and Zhai 2003) is:
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OXðrjq; dÞ ¼
rank

log pXðqjd; rÞ

¼rank
log

pXðq; d; rÞ
pXðd; rÞ

ðapplying assumption 2Þ

¼rank
log

pXðq; d; rÞ
pXðdÞ � pXðrÞ

ðapplying equation 9Þ

¼rank
log

pXðq; dÞ � pXðq; d;�rÞ
pXðdÞ

¼rank
log

pXðq; dÞ � pXðq; dj�rÞ � pRð�rÞ
pXðdÞ

ðapplying assumption 1Þ

¼rank
log

pXðq; dÞ � pXðqj�rÞ � pXðdj�rÞ � pXð�rÞ
pXðdÞ

ðapplying assumption 2Þ

¼rank
log

pXðq; dÞ � pXðq;�rÞ � pXðdÞ
pXðdÞ

¼rank
log pXðqjdÞ � pXðq;�rÞ½ �

¼rank
log pXðqjdÞ½ �:

Appendix II: Derivations with the topic variable

Starting with the log-odds ratio, we have:

log
pWðrjq; d; tÞ
pWð�rjq; d; tÞ

� �
:

We assume that assumption 2 and 4 holds. Next, we derive similar to Lafferty and Zhai (2003):

OWðrjq; d; tÞ ¼ log
pWðq; d; t; rÞ
pWðq; d; t;�rÞ

� �

¼ log
pWðq; tjd; rÞ � pWðd; rÞ
pWðq; tjd;�rÞ � pWðd;�rÞ

� �

¼ log
pWðq; tjd; rÞ
pWðq; tjd;�rÞ

� �
þ log

pWðd; rÞ
pWðd;�rÞ

� �

¼ log
pWðq; tjd; rÞ

pWðq; t; dj�rÞ=pWðdj�rÞ

� �
þ log

pWðd; rÞ
pWðd;�rÞ

� �
ðapplying assumption 7Þ

¼ log
pWðq; tjd; rÞ
pWðq; tj�rÞ

� �
þ log

pWðd; rÞ
pWðd;�rÞ

� �

¼rank
log pWðq; tjd; rÞ þ log

pWðd; rÞ
pWðd;�rÞ

� �
ðapplying assumption 2Þ

¼rank
log pWðq; tjd; rÞ þ log

pWðrÞ � pWðdÞ
pWð�rÞ � pWðdÞ

� �

¼rank
log pWðq; tjd; rÞ þ log

pWðrÞ
pWð�rÞ

� �

¼rank
log pWðq; tjd; rÞ:
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To derive the Ponte and Croft model (1998), we have:

pWðq; tjd; rÞ ¼
pWðq; t; dÞ � pWðq; t; d;�rÞ

pWðd; rÞ
ðapplying equation 9Þ

¼ pWðq; t; dÞ � pWðq; t; dj�rÞ � pWð�rÞ
pWðd; rÞ

ðapplying assumption 7Þ

¼ pWðq; t; dÞ � pWðdj�rÞ � pWðq; tj�rÞ:pWð�rÞ
pWðd; rÞ

ðapplying assumption 2Þ

¼ pWðq; t; dÞ � pWðdÞ:pWð�rÞ � pWðq; tj�rÞ
pWðdÞpWðrÞ

¼ pWðq; t; dÞ
pWðdÞ � pWðrÞ

� pWð�rÞ
pWðrÞ

� pWðq; tj�rÞ

¼rank
pWðq; tjdÞ:
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